Mehr als 40 Prozent der Data-Science-Tätigkeiten werden bis 2020 automatisiert sein

foto cc0 pixabay geralt roboter daten netz

Laut des IT-Research und Beratungsunternehmens Gartner werden bis zum Jahr 2020 mehr als 40 Prozent der Data-Science-Tätigkeiten automatisiert sein – dies hat sowohl eine Produktivitätssteigerung zur Folge als auch eine intensivere Nutzung von Daten und Analytics durch sogenannte »Citizen Data Scientists«.

Laut Gartner können Citizen Data Scientists die Lücke zwischen den Mainstream-Self-Service-Analytics der Businessanwender und den Advanced-Analytics-Techniken der Data Scientists schließen. Sie können nun anspruchsvolle Analysen durchführen, die vorher mehr Expertise verlangt hätten – dies ermöglicht ihnen, Advanced Analytics bereitzustellen ohne die Kenntnisse eines Data Scientists zu besitzen.

»Die vereinfachte Nutzung von Data-Science-Produkten für Citizen Data Scientists wird die Reichweite für entsprechende Anbieter im Unternehmen vergrößern und dabei helfen, die Qualifikationslücke zu überwinden«, erläutert Alexander Linden, Research Vice President bei Gartner. »Der Schlüssel zu dieser Vereinfachung ist die Automatisierung von monotonen und hoch manuellen Aufgaben, die keine tiefgründige Expertise im Bereich Data Science verlangen.«


Gartner Says More Than 40 Per Cent of Data Science Tasks Will Be Automated by 2020

Analysts to Explore Trends in Data Science at Gartner Data & Analytics Summits 2017

 

More than 40 per cent of data science tasks will be automated by 2020, resulting in increased productivity and broader usage of data and analytics by citizen data scientists, according to Gartner, Inc.

Gartner defines a citizen data scientist as a person who creates or generates models that use advanced diagnostic analytics or predictive and prescriptive capabilities, but whose primary job function is outside the field of statistics and analytics.

According to Gartner, citizen data scientists can bridge the gap between mainstream self-service analytics by business users and the advanced analytics techniques of data scientists. They are now able to perform sophisticated analysis that would previously have required more expertise, enabling them to deliver advanced analytics without having the skills that characterise data scientists.

With data science continuing to emerge as a powerful differentiator across industries, almost every data and analytics software platform vendor is now focused on making simplification a top goal through the automation of various tasks, such as data integration and model building.

»Making data science products easier for citizen data scientists to use will increase vendors‘ reach across the enterprise as well as help overcome the skills gap,« said Alexander Linden, research vice president at Gartner. »The key to simplicity is the automation of tasks that are repetitive, manual intensive and don’t require deep data science expertise.«

Mr Linden said the increase in automation will also lead to significant productivity improvements for data scientists. Fewer data scientists will be needed to do the same amount of work, but every advanced data science project will still require at least one or two data scientists.

Gartner also predicts that citizen data scientists will surpass data scientists in the amount of advanced analysis produced by 2019. A vast amount of analysis produced by citizen data scientists will feed and impact the business, creating a more pervasive analytics-driven environment, while at the same time supporting the data scientists who can shift their focus onto more complex analysis.

»Most organisations don’t have enough data scientists consistently available throughout the business, but they do have plenty of skilled information analysts that could become citizen data scientists,« said Joao Tapadinhas, research director at Gartner. »Equipped with the proper tools, they can perform intricate diagnostic analysis and create models that leverage predictive or prescriptive analytics. This enables them to go beyond the analytics reach of regular business users into analytics processes with greater depth and breadth.«

According to Gartner, the result will be access to more data sources, including more complex data types; a broader and more sophisticated range of analytics capabilities; and the empowering of a large audience of analysts throughout the organisation, with a simplified form of data science.

»Access to data science is currently uneven, due to lack of resources and complexity — not all organisations will be able leverage it,« said Mr Tapadinhas. »For some organisations, citizen data science will therefore be a simpler and quicker solution — their best path to advanced analytics.«

For more predictions and analysis, Gartner clients can read more in the report: »Predicts 2017: Analytics Strategy and Technology.«
Gartner analysts will provide additional analysis on data and analytics leadership trends at the Gartner Data & Analytics Summit 2017, taking place 20-21 February in Sydney, 6-9 March in Grapevine, Texas, 20-22 March in London, 23-24 March in Tokyo and 20-21 June in Sao Paulo, Brazil. Follow news and updates from the events on Twitter using #GartnerDA.

Hier folgt eine kleine Auswahl an Fachbeiträgen, Studien und Artikel die zu diesem Thema passen. Geben Sie in der »Artikelsuche…« rechts oben Ihre Suchbegriffe ein und lassen sich überraschen, welche weiteren Treffer Sie auf unserer Webseite finden.

Diese Auswahl wurde von Menschen getroffen und nicht von Algorithmen.

Data Analysts und Data Scientists – Auf der Suche nach den Datendetektiven

Big Data Scientist: Gestern, heute und morgen

Studie: Data Scientists sind oft »Geeks«

Wettbewerbsvorteile durch Data-Science

Vor- und Nachteile eines Database-as-a-Service: Data Warehouse aus der Cloud

Intuitiv versus faktenbasiert: Nachholbedarf bei Data-Science-Nutzung

Die neue Rolle von BI: Data Science für Jedermann

Studie: Suche nach Data Scientists muss höhere Priorität bekommen

Big Data Analytics erfordert eine verlässliche Datenbasis

Studie erforscht Eigenschaften eines guten Data Scientist

Was macht eigentlich … ein Data Scientist?

Vom Data Scientist zum Daten-Messie

Neues Curriculum für Data Scientists

Weitere Artikel zu